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ABSTRACT: Catalyzed by a rhodium complex of P-stereogenic diphosphine ligand (R)-2-tert-butylmethylphosphino-3-(di-tert-
butylphosphino)quinoxaline ((R)-3H-QuinoxP*), five-membered cyclic a-dehydroamino ketones bearing endocyclic vinyl and
endocyclic keto-carbonyl groups were sequentially hydrogenated to give chiral cyclic trans-f-amino alcohols with two contiguous
stereocenters in quantitative conversions, excellent enantioselectivities and good diastereoselectivities.
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alcohols by asymmetric hydrogenation remains elusive and thus
highly desired.

Over the duration of our research concerning asymmetric

hydrogenations,g our laboratory has reported a highly chemo- P-amino alcohols with two contiguous stereocenters via a one-
and enantioselective hydrogenation of a@-dehydroamino ketones pot sequential asyrn?(l)elt]ric hydrogenation of C=C and C=0
catalyzed by a rhodium complex derived from a P-stereogenic bonds (Scheme 1) To the best of our knowledge, this
diphosphine ligand” trichickenfootphos (TCFP) (Scheme 1).%8 procedure represents the first example for the construction of
The readily prepared chiral cyclic @-amino ketones can be two contli(guous stereocenters in a cyclic structure using such a
further converted to cyclic cis-f-amino alcohols using a four- strategy. = Besides overcoming the challenges posed by the
step process. Related studies showed that a similar rhodium rigid and sterically demanding structures of cyclic substrates in

achieving high enantioselectivities, it is worth noting that our

complex of P-stereogenic diphosphine ligand 1,2-bis(tert-
catalytic system afforded unusual trans-f-amino alcohols with

butylmethylphosphino)benzene (BenzP*) could be success-
fully applied to the asymmetric hydrogenation of ketones with

the help of a coordinating amino group (Scheme 1).* Herein, Received: January 22, 2016
we reported the rhodium-catalyzed preparation of chiral cyclic Published: March 8, 2016
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high diastereoselectivities, in part due to its unique stepwise
process.

Initially, TCFP—Rh complex, which has provided excellent
chemo- and enantioselectivities for the hydrogenation of a-
dehydroamino ketones to a-amino ketones under a hydrogen
pressure of 3 atm (Table 1, entry 1), was used as a catalyst in a

Table 1. Ligand and Solvent Screening”
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(S)-TCFP  (R,R)-Duphos  (S,S)-BenzP* (R R)-QuinoxP* (R)-3H-QuinoxP*
entry ligand solvent  conv [%] (trans/cis)” ee [%] (trans)

1 TCFP EtOH 99 99

2 TCFP EtOH 34/66 -99

3 Duphos EtOH 39/61 —49

4 BenzP* EtOH 12/88 -33

5 QuinoxP* EtOH 23/77 39

6 3H-QuinoxP* EtOH 65/35 97

7 BenzP* iPrOH 78/22 15

8 QuinoxP* DCM 75/25 84

9 3H-QuinoxP* DCM 79/21 67

10 3H-QuinoxP* EtOAc 82/18 98

11°  3H-QuinoxP*  MeOH 35/20 93

12 3H-QuinoxP* THF 83/17 90

13 3H-QuinoxP*  toluene 81/19 95

14 3H-QuinoxP*  dioxane 93/7 93

1S 3H-QuinoxP*  dioxane 93/7 94

165  3H-QuinoxP*  dioxane 92/8 82

“Conditions: 1a (0.2 mmol), ligand—Rh (1 mol %), H, (30 atm),
solvent (2 mL), rt, 12 h. *Conversions were calculated from 'H NMR
spectra. “The ee values were determined by HPLC using chiral
columns. “Under a hydrogen pressure of 3 atm, only a-amino ketone
was obtained in 99% conversion and 99% ee. “Product 2a was
obtained in yield of $5% with a-amino ketone in yield of 45%.”Under
a hydrogen pressure of 20 atm. #Under a hydrogen pressure of 10 atm.

model sequential asymmetric hydrogenation. As expected, after
sequential hydrogenation of C=C and C=0 bonds at 30 atm
H, and in EtOH solvent, the starting material 1a was converted
to the desired 2-amino-indanol 2a in quantitative yield and with
99% ee for both diastereoisomers but with a poor diastereo-
selectivity (entry 2). Subsequently, other rhodium complexes
bearing electron-rich P-stereogenic diphosphine ligands were
screened. The C,-symmetric ligands (Duphos, BenzP*, and
QuinoxP*) showed poorer enantioselectivities and similar
diastereoselectivities (entries 3—5). A stable C,-symmetric
ligand 3H-QuinoxP*, which was recently developed by
Imamoto et al. and can be easily prepared via a one-step
reaction,”” also gave the desired product with excellent ee
(97%) and with an unexpected trans-selectivity (entry 6). The
absolute configuration of the hydrogenated product was
assigned by H—H Noesy (see Supportin§ Information) and
HPLC spectra according to the literature.”® Following studies
showed a dramatic and interesting solvent effect (see
Supporting Information for details). For example, EtOH and
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iPrOH gave opposite diastereoselectivities for reactions carried
out using BenzP*—Rh (entry 7 vs 4), and EtOH and DCM
provided the main products with different trans/cis-config-
urations in QuinoxP*—Rh-catalyzed reactions (entry 8 vs ).
Using 3H-QuinoxP*—Rh as the catalyst, we found that dioxane
afforded the best diastereoselectivity (93/7) with 93% ee
(entries 9—14). Reducing the hydrogen pressure to 20 atm
increased the ee to 94% and had no effect on dr (entry 15).
Further reducing the hydrogen pressure to 10 atm was
detrimental to selectivity (entry 16).

Various substrates with different substituents were studied in
the 3H-QuinoxP*—Rh-catalyzed sequential asymmetric hydro-
genation under a hydrogen pressure of 20 atm in dioxane at
room temperature (Scheme 2). All substrates were reduced

Scheme 2. Substrate Scope”
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Cl
Br Cl
2m 2n 20 2p
94% yield 92% vield 91% yield 94% yield

96% ee, 6/1 dr 98% ee, 6/1 dr 96% ee, 3/1 dr 97% ee, 5/1 dr

“Conditions: 1 (0.2 mmol), 3H-QuinoxP*—Rh (1 mol %), H, (20
atm), dioxane (2 mL), rt, 12 h. The dr and ee values were determined
by HPLC using chiral columns. The yields were for the mixture of
trans- and cis-products isolated by flash chromatography.

smoothly with excellent enantioselectivities (89—99% ee) and
satisfactory diastereoselectivities (3/1 to 16/1 dr). Only the 7-
Me-substituted substrate 2e and 6-COOMe-substituted 2h gave
lower enantioselectivities of 90% and 89% ee’s, respectively.
Substrates 2b—2f bearing electron-donating substituents on the
phenyl ring gave the desired products with higher diaster-
eoselectivities (9/1 to 16/1 dr). Substrates 2g—2p bearing
electron-withdrawing groups provided lower diastereoselectiv-
ities (3/1 to 7/1 dr).

To gain a better understanding of the reaction mechanism,
control experiments were performed (Scheme 3). First, the
hydrogenation reaction was conducted under a hydrogen
pressure of 3 atm in dioxane, and the a-amino ketone was
solely obtained in quantitative yield with 92% ee. Another
reaction was set up under a hydrogen pressure of 20 atm. After
0.5 h, 'H NMR spectra indicated that both a-amino ketone
(89% yield) and f-amino alcohol (11% yield) were formed,

DOI: 10.1021/acs.orglett.6b00212
Org. Lett. 2016, 18, 1290—-1293



Organic Letters

Scheme 3. Control Experiments
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with the ee of the a-amino ketone (92%) being consistent with
that obtained under a lower hydrogen pressure. A third
reaction, also carried out under a hydrogen pressure of 20 atm
for 12 h, gave the four isomers of f-amino alcohols in a ratio of
90/6/3/1. A detailed conversion process is described in
Scheme 4. These results reveal that the one-pot synthesis of

Scheme 4. Detailed Conversion Process for the Synthesis of
the Four Isomers of f-Amino Alcohols
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cyclic trans-f-amino alcohols includes two sequential asym-
metric hydrogenation steps with the C=C bond being reduced
more rapidly than the C=0 bond. The high enantioselectivity
can be mainly attributed to the hydrogenation of the C=C
bond and is further enriched during hydrogenation of the C=
O bond. The diastereoselectivity is influenced by a “match/
mismatch” relationship between the catalyst and the a-amino
ketone (see Supporting Information for details).

To further demonstrate the usage of this highly efficient
catalytic system, the asymmetric hydrogenation was carried out
on a gram scale and further applied to the synthesis of
important bioactive compounds (Scheme S). The desired
product 2a was obtained in 94% yield with a slight decrease in
the enantiomeric excess (91%) and diastereoselectivity (9/1
dr). The protecting Ac substituent on the amino group of 2a
was easily removed under reflux conditions in a 3 M KOH
aqueous solution followed by reprotection with a Boc group.
Finally, the hydroxyl group of compound 3a was converted to
an azide group via a Mitsunobu reaction to give compound 4a,
an important intermediate used for the synthe51s of a potent
inhibitor of apoptosis (IAP) antagonist.'

In summary, a highly efficient synthesis of chiral cyclic trans-
P-amino alcohols was developed via a one-pot sequential
asymmetric hydrogenation of a-dehydroamino ketones with
excellent enantioselectivities and diastereoselectivities. A special
P-stereogenic diphosphine ligand, 3H-QuinoxP*, which
possesses a rigid and sterically hindered structural motif, was
sufficient for the hydrogenation. This methodology represents
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Scheme 5. Application for the Preparation of an Important
Intermediate of IAP Antagonist
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a potent IAP antagonist

the first example of the construction of two contiguous
stereocenters in a cyclic structure using such a strategy. The
reaction could be carried out on a gram scale and was further
applied to an asymmetric synthesis of a key intermediate
required for the preparation of a potent IAP antagonist.
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